LATVIAN SIGN LANGUAGE RECOGNITION CLASSIFICATION POSSIBILITIES
نویسندگان
چکیده
منابع مشابه
Sign Language Recognition Using Temporal Classification
In the US alone, there are approximately 900,000 hearing impaired people whose primary mode of conversation is sign language. For these people, communication with non-signers is a daily struggle, and they are often disadvantaged when it comes to finding a job, accessing health care, etc. There are a few emerging technologies aimed at overcoming these communication barriers, but most existing so...
متن کاملDynamic Gesture Classification for Vietnamese Sign Language Recognition
This paper presents an approach of feature extraction and classification for recognizing continuous dynamic gestures corresponding to Vietnamese Sign Language (VSL). Input data are captured by the depth sensor of a Microsoft Kinect, which is almost not affected by the light of environment. In detail, each gesture is represented by a volume corresponding to a sequence of depth images. The featur...
متن کاملSign Language Recognition
This chapter covers the key aspects of Sign Language Recognition (SLR), starting with a brief introduction to the motivations and requirements, followed by a précis of sign linguistics and their impact on the field. The types of data available and the relative merits are explored allowing examination of the features which can be extracted. Classifying the manual aspects of sign (similar to gest...
متن کاملVisual Sign Language Recognition
We have developed the Hand Motion Understanding (HMU) system that understands static and dynamic signs of the Australian Sign Language (Auslan). The HMU system uses a visual 3D hand tracker for motion sensing, and an adaptive fuzzy expert system for classification of the signs. This paper presents the hand tracker that extracts 3D hand configuration data with 21 degrees-of-freedom (DOFs) from a...
متن کاملSign Language Recognition
Our goal here is to recognize a sign language measured from wearable sensor gloves. A sign language is expressed as a sequence of gestural patterns to convey a meaning. Hidden Markov models (HMMs) have been shown to be successful in temporal pattern recognition, such as speech, handwriting, and gesture recognition [4]. In this project, we investigate how well HMMs can perform when applied to si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference
سال: 2017
ISSN: 2256-070X,1691-5402
DOI: 10.17770/etr2017vol2.2653